RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THRID SEMESTER EXAMINATION, MARCH 2022 SECOND YEAR [BATCH 2020-23]

COMPUTER SCIENCE (Honours)

Time: 11 am – 1 pm Paper: VI [CC6] Full Marks: 50

Answer **any five** questions of the following:

: 05/03/2022

Date

 $[5\times10]$

- 1. a) What do you mean by front end and back end of a compiler?
 - b) Write down the functions performed by a loader.
 - c) Write a short note on various types of kernel designs.

(3+3+4)

2. a) Consider the following set of processes with arrival time and CPU burst time given in milliseconds:

Process	Arrival Time	Burst Time
1	0	7
2	1	5
3	2	3
4	3	2
5	4	1
6	5	3

What is the average turnaround time for these processes with *shortest remaining time first* (SRTF)?

- b) What do you mean by abnormal termination of processes?
- c) Describe the actions taken by a kernel to context switch between processes.

(5+2+3)

3. a) Consider the following statements:

S1:
$$a = x + y$$

S2:
$$b = y+1$$

S3:
$$c = a + b$$

S4:
$$d = c+1$$

S5:
$$e = c + d$$

Schedule the statements with necessary semaphores so that maximum parallelism is achieved.

- b) What do you mean by mutex lock?
- c) Compare independent and co-operating process.

(5+3+2)

- 4. a) Show how improper use of wait and signal operation can lead to critical section problem?
 - b) Consider a system having 'm' resources of same type. The resources are shared by 4 processes P0, P1, P2 and P3 which has peak time demands of 3, 4, 6, and 5 respectively. What would be the minimum value of m that ensures that deadlock will never occur?
 - c) With an example show how deadlock can be avoided using resource allocation graph. (3+4+3)

- 5. a) Explain absolute code and relocatable code.
 - b) A system has 1000k of main memory. The job arrives and finishes in the following sequence: Job1 requiring 200k arrives -> Job2 requiring 350k arrives -> Job3 requiring 300k arrives -> Job1 finishes->Job4 requiring 120k arrives -> Job5 requiring 150k arrives-> Job6 requiring 80k arrives. Which among *First Fit* and *Best Fit* performs better for this sequence?
 - c) What is the page protection scheme using valid-invalid bit?
- 6. a) In a simple paging system, with 2²⁴ bytes of logical memory, 256 pages at physical address space and a page size 2¹⁰ bytes, how many bits are there in physical address?
 - b) What is demand paging?
 - c) Explain Enhanced Second Chance page replacement algorithm.

(4+2+4)

(3+5+2)

- 7. a) Disk requests come to a disk driver for cylinders 10, 22, 20, 2, 40, 6 and 38, in that order at a time when the disk drive is reading from cylinder 20. The seek time is 6 ms per cylinder.
 - i) Calculate the total seek time, if the disk arm scheduling algorithm is FCFS.
 - ii) If the scheduling algorithm is closest cylinder next, then calculate the total seek time.
 - b) What do you mean by RAID?
 - c) What is the utility of Network Attached Storage (NAS)?

[(2+3)+2+3]

